Tag

Nombres premiers

Browsing

La vidéo du jour parle de l’Hypothèse de Riemann !

https://www.youtube.com/watch?v=KvculWl-jhE

J’ai essayé comme toujours de rendre ça accessible, mais je suis conscient que ça n’est pas évident car cela demande au minimum de connaître les nombres complexes.

J’ai pris soin toutefois d’éviter la notation $latex \Sigma$ pour désigner les séries. Il me semble que sur un épisode court ça n’apporte pas grand chose à part demander au lecteur un effort de décryptage supplémentaire.

trinity collegeLa semaine dernière, je vous ai parlé de ce qu’on appelle la deuxième conjecture de Hardy-Littlewood, qui affirme qu’il y a toujours plus de nombres premiers entre 0 et N que dans tout autre intervalle de longueur N.

Cette conjecture a de quoi intriguer, car on n’en a jamais trouvé un seul contre-exemple, et pourtant les spécialistes sont convaincus qu’elle est fausse. Mais ils estiment que pour trouver un contre-exemple, il faut aller chercher au-delà de $latex 10^{174}$ !

Aujourd’hui, nous allons voir ce qui permet de faire cette estimation. Il s’agit d’une autre conjecture proposée au même moment par les mêmes mathématiciens : celle qu’on appelle la première conjecture de Hardy-Littlewood.

hardyC’est l’histoire d’un physicien à qui on demande d’étudier la conjecture

« Tout nombre impair est un nombre premier. »

Il commence donc à regarder les nombres impairs les uns après les autres :

1 : ok.     3 : ok.    5 : ok.     7 : ok.    9 : …hum.     11 : ok.    

13 : ok.     15 : …euh.     17 : ok.     19 : ok.

Et le physicien finit par conclure :

« La conjecture est vraie; …en première approximation. »

Au-delà du fait que cette conjecture est évidemment carrément fausse, cette histoire illustre le fait qu’en mathématiques il n’y a pas de demi-mesure : soit une conjecture est vraie pour ABSOLUMENT TOUS les nombres, soit elle est fausse ! Un seul contre-exemple suffit pour démolir l’édifice.

Et pourtant aujourd’hui nous allons parler d’une conjecture un peu étrange : la deuxième conjecture de Hardy-Littlewood. Personne n’en a jamais trouvé de contre-exemple, et malgré cela les spécialistes sont convaincus qu’elle est fausse ! Mais le premier contre-exemple est attendu fabuleusement loin, au point qu’on estime que la conjecture est vraie jusqu’à au moins 10 puissance 174 !

math_equations_300pxLes mathématiciens adorent les nombres premiers ! Non seulement ils sont à la base de problèmes simples mais encore non-résolus, comme la conjecture de Goldbach dont je parlais ici (tout nombre pair serait la somme de deux nombres premiers), mais les nombres premiers s’avèrent également très utiles dans la vie réelle, comme avec l’algorithme de cryptage RSA qui sert à protéger un grand nombre de nos secrets informatiques ou bancaires (sujet d’un autre billet).

Pour ces raisons, les mathématiciens adoreraient disposer d’une machine à fabriquer des nombres premiers, ou tout du moins d’une formule qui permette d’en construire à volonté.

matrix_300Imaginons que vous soyez le chef de la diplomatie de votre pays, et que vos ambassadeurs aient besoin de vous envoyer des messages top secrets. Afin d’échapper aux oreilles de l’ennemi et de Wikileaks, vous allez avoir besoin de coder ces messages. Comment faire ?

La cryptographie basique

Pour cela, vous pouvez choisir une méthode simple, comme substituer une lettre par une autre dans l’alphabet. C’est le principe qu’utilisait César pour communiquer avec ses généraux. Les messages étaient codés de la manière suivante : chaque lettre est remplacée par la lettre située 3 cases plus loin dans l’alphabet : A devient D, B devient E, etc. En voici le principe en image pour coder le mot « BONJOUR » :

Tout nombre pair est la somme de deux nombres premiers Sous son apparente simplicité, cet énoncé en principe compréhensible par un enfant de 3ème (*) constitue en fait l’une des énigmes les plus importantes des mathématiques modernes. Cette affirmation porte le nom de « Conjecture de Goldbach », en référence au mathématicien prussien qui l’a pour la première fois énoncée en 1742, dans une lettre à Leonard Euler. Ce dernier lui répondit qu’il considérait ce résultat comme…