Ma nouvelle vidéo vous parle de la plus grosse erreur de prédiction de toute l’histoire de la physique : le calcul de l’énergie du vide. http://www.youtube.com/watch?v=EmfvKXO5DZk Ceux qui connaissent l’histoire remarqueront que j’évite soigneusement d’employer le terme d’énergie noire ou d’énergie sombre, que je n’aime pas du tout. Ce terme est parfois utilisé pour désigner la constante cosmologique, de manière un peu analogue à la matière noire, mais à mon sens les deux sont suffisamment…
Après une petite interruption, je continue ma série de billets consacrés aux bases théoriques de la cosmologie.
Résumé de l’épisode précédent : Si vous avez lu mon premier billet sur le Big-Bang, vous savez déjà que l’équation d’Einstein appliquée au cas d’un Univers isotrope et homogène se réduit à une équation différentielle assez simple, l’équation de Friedmann.
$latex \left(\frac{da}{dt}\right)^2=\frac{8\pi G\rho_0}{3}\frac{1}{a(t)}&s=3&fg=007700$
Cette équation permet en particulier de décrire le fait que l’Univers est en expansion, ce que l’on constate en observant les galaxies s’éloigner de nous. Grâce aux mesures expérimentales de son taux d’expansion actuel, il est possible de rembobiner l’équation de Friedman pour reconstituer la jeunesse de l’Univers. Et c’est ainsi qu’on en arrive à l’idée du Big Bang, cette période dense et chaude où l’Univers était extraordinairement courbé.
Aujourd’hui nous allons nous intéresser non pas au passé mais à l’avenir de notre Univers, et voir en quoi son destin est irrémédiablement lié à sa forme. Et pour ça, il faut d’abord vous avouer que je vous ai menti sur l’équation de Friedmann. La version que je vous ai donnée est en réalité incomplète, et voici pourquoi.
Nouvelle vidéo sur la chaîne, sur un sujet que j’avais déjà traité dans ce billet il y a quelques années : les phénomènes physico-chimiques à l’oeuvre dans le pastis.
http://www.youtube.com/watch?v=YjrrpMN3vIg
Pour ceux que ça intéresse, je vous conseille de jeter un oeil à la publi sur la vodka que je cite dans la vidéo : « Structurability: a collective measure of the structural differences in vodkas. » [1]. Le papier analyse différentes vodkas par RMN, et essaye de trouver une signature des différences (supposées) de goût. Vu que la composition de base est strictement identique (40% ethanol, 60% eau), les différences (si elles existent) doivent venir d’autre chose.
Cela fait maintenant quelques semaines que mon temps et mon énergie vont plutôt dans la réalisation de vidéos que dans l’écriture de billets de blog. Pour ceux qui préfèrent la forme écrite à Youtube, j’ai décidé de me rattraper en vous proposant en alternance avec les vidéos une petite série de 3 billets consacrés aux éléments de base de la cosmologie théorique, une discipline pas si imbitable qu’on le croit ! Comme d’habitude, l’idée est que ces billets soient lisibles avec des connaissances de lycée.
Le billet de cette semaine commence avec le Big-Bang, et les deux suivants seront consacrés respectivement au destin de l’Univers, et au mystère de l’énergie noire.
L’équation d’Einstein
Toute la cosmologie moderne est fondée sur la théorie de la relativité générale d’Einstein. J’ai déjà eu l’occasion de l’écrire de nombreuses fois ici, la grande idée d’Einstein a été d’expliquer l’attraction gravitationnelle non pas par une « force » comme le faisait Newton, mais en disant que si les objets massifs s’attirent, c’est parce qu’ils courbent l’espace-temps autour d’eux.
Pour pouvoir concrétiser cette idée, Einstein avait besoin d’une équation qui permette de quantifier ce lien, c’est-à-dire qui relie la courbure de l’espace-temps à la masse. Cette équation, il la trouva en 1915 après de nombreuses tentatives infructueuses. Là voici, et on l’appelle tout simplement l’équation d’Einstein
$latex R_{\mu\nu} – \frac{1}{2}Rg_{\mu\nu} = \frac{8\pi G}{c^4} T_{\mu\nu}&s=3&fg=0000aa$
Nouvelle vidéo, avec un gros morceau qui m’a demandé pas mal de boulot !
http://www.youtube.com/watch?v=rXhzeKh8yBk
Pour ceux qui ont encore faim, quelques précisions en vrac pour compléter cette vidéo qui forcément n’aborde le sujet que de manière superficielle.
Vous êtes vous déjà demandé pourquoi le tableau de Mendeleev avait la taille qu’il a ? Pourquoi contient-il en gros une centaine d’éléments (on en connait 118), plutôt que 10 ou 1000 ou même 10 000 ? Un simple petit calcul permet de l’appréhender. Pour cela, il suffit de se baser sur le modèle de l’atome dit « de Bohr ».
Une nouvelle vidéo à l’occasion de la sortie du film consacré à la vie de Stephen Hawking… https://www.youtube.com/watch?v=Sz-tnYUqkC4
Petite nouveauté en ce début d’année 2015, je lance une chaîne Youtube pour Science étonnante !
Sans plus attendre, en voici la première vidéo !
https://www.youtube.com/watch?v=SszyI_AtKCU
Trois semaines après sa sortie, j’imagine que beaucoup d’entre vous auront vu le film Interstellar de Christopher Nolan. Il se trouve que ce film utilise un résultat très connu de la théorie de la relativité d’Einstein, le paradoxe des jumeaux, mais dans sa version « gravitationnelle ». Je me suis dit que c’était l’occasion de vous parler de ce phénomène bizarre et souvent mal compris !
Pour les puristes qui n’auraient pas encore vu le film, rassurez-vous je ne vais pas du tout parler ni de l’intrigue, ni des personnages. Je vais juste parler de physique, mais si vous connaissez l’histoire, vous verrez sans problème où est le lien.
Vous avez déjà certainement entendu parler de ces animaux qui voient moins bien les couleurs que nous. Nos amis les chiens ne voient pas le rouge et l’orange; quant aux dauphins, ils sont carrément monochromes ! Mais d’autres animaux perçoivent au contraire plus de couleurs que nous. Certains insectes sont même capables de détecter la polarisation de la lumière !
Vous ne savez pas exactement ce qu’est la polarisation de la lumière ? C’est bien normal, puisque nous autres humains, nous sommes incapables de la voir ! Quoique…
A la fin de ce billet, vous vous apercevrez peut-être que vous possédez cette super-capacité inutile : voir la lumière polarisée. Tout ça grâce à la houppe de Haidinger.