Category

Physique

Category

geckoMouches, araignées et autres moustiques, nous sommes habitués à voir nos amis les petites bêtes grimper aux murs sans difficultés apparentes. Mais le plus spectaculaire d’entre tous est très certainement le lézard gecko.

Capable d’escalader les surfaces les plus lisses et même de marcher au plafond, le gecko intrigue depuis des dizaines d’années les scientifiques. Mais heureusement depuis peu, il semble que son mystère soit enfin percé, et ouvre la voie à de nouvelles applications technologiques.

Elle nous est familière, nous la voyons presque tous les jours, et pourtant la Lune conserve sa part de mystère ! J’avoue que je ne m’étais jamais franchement demandé d’où venait notre unique satellite naturel. Et vous allez voir que la réponse n’est pas si évidente !

Le sujet est d’ailleurs très actif pour les chercheurs du domaine, comme en témoignent trois récents articles publiés simultanément dans les prestigieuses revues Nature et Science [1,2,3].

Faisons donc un petit tour d’horizon des différentes hypothèses qui expliquent l’apparition de notre Lune.

Sommes-nous seuls dans l’Univers ? C’est pour répondre à cette obsédante question que de nombreux scientifiques ont participé depuis les années 60 au programme SETI : Search for ExtraTerrestrial Intelligence.

Une des principales méthodes d’observation du programme SETI consiste à utiliser un radio-téléscope. Ces télescopes géants (comme celui d’Arecibo en photo ci-dessous) permettent de capter des ondes, mais pas dans le domaine de la lumière visible. Au contraire d’une bonne vieille lunette astronomique, ces télescopes détectent les ondes radios.

La première observation en radio-astronomie du programme SETI fut réalisée en 1960 par l’américain Francis Drake, alors jeune astronome à l’observatoire de Green Bank en Virginie. Pour justifier sa tentative et estimer ses chances de pouvoir détecter une civilisation extra-terrestre, il a proposé un calcul approché, connu maintenant sous le nom d’équation de Drake. Voyons un peu le raisonnement derrière cette équation.

Il y a quelques mois, au cours d’un dîner consacré à Votons pour la Science, je discutais avec mes comparses blogueurs Xochipilli et Jean-Michel Courty. La conversation portait notamment sur le buzz associé à l’inévitable boson de Higgs.

Jean-Michel a alors fait remarquer qu’à son avis, il existait d’autres résultats très importants, et dont injustement on ne parlait pas assez.

« – Ah bon ? Quoi ?

– La localisation d’Anderson, par exemple ».

Je dois avouer qu’à ce moment là, je n’avais pas une idée très claire de ce qu’était la localisation d’Anderson, même si ça me rappelait vaguement des conversations de machine à café avec certains de mes collègues de labo.

Pour réparer l’injustice soulevée par Jean-Michel, j’ai décidé de relever le défi et de vous parler aujourd’hui de la localisation d’Anderson, qui a valu à son auteur le prix Nobel en 1977. Pour vous mettre l’eau à la bouche, vous allez découvrir un effet que l’on peut rapprocher de la supra-conductivité, mais à l’envers ! Une sorte de supra-résistivité, donc…

On attribue généralement au philosophe grec Démocrite l’idée que la matière soit composée d’éléments plus ou moins indivisibles : les atomes. Si l’idée était juste, Démocrite n’avait pas réalisé à l’époque à quel point les atomes qui nous entourent sont petits : moins d’un nanomètre, soit un milliardième de mètre !

Il a fallu ensuite attendre la fin du XIXème siècle pour que les physiciens apportent une preuve définitive de l’existence des atomes, et arrivent à estimer leur taille de manière suffisamment précise.

Et pourtant en 1762, Benjamin Franklin fit une observation étonnante qui aurait pu lui permettre un siècle avant tout le monde de réaliser à quel point les atomes et les molécules qui nous entourent sont petits. Mais bizarrement, il n’a pas poussé son raisonnement assez loin.

Au début de l’été, et après 18 mois de débats, il semble que l’affaire de la bactérie à l’arsenic ait été définitivement tranchée. La revue Science a en effet publié deux articles réfutant l’affirmation initiale de l’équipe de la NASA. En cette période estivale où je poste des rediffusions sur ce blog, j’en profite pour vous reservir mon article écrit à l’époque, et qui ne parle pas tant de la bactérie à l’arsenic, que des éléments chimiques qui sont indispensables à la vie telle que nous la connaissons.

Difficile de passer à côté, la NASA vient d’annoncer avec tambours et trompettes la mise au jour d’une « nouvelle forme de vie », soi-disant basée sur l’arsenic.

Mais il semble que cette découverte suscite déjà la polémique chez les scientifiques du domaine, et n’étant pas très compétent sur le fond, je me garderai bien de commenter le caractère solide ou pas de cette annonce.

Pourtant c’est une bonne occasion de revoir quelques principes de biochimie et de se replonger dans la classification périodique des éléments de Mendeleev, alors n’hésitons pas !

L’été est une bonne saison pour aller à la plage. Aussi pour s’adonner à l’astronomie. Voire les deux !

Tout ça me rappelle une phrase que m’avait dite mon père au cours de vacances estivales, alors que je devais avoir dans les 6 ans : « Il y a autant d’étoiles dans l’Univers que de grains de sable sur Terre ! »

J’imagine qu’à l’époque je n’avais pas dû trop le croire. J’étais déjà perplexe devant l’immensité du nombre des grains de sable de la plage du Grau-Du-Roi, alors sur toute la Terre, pensez-donc !

Aujourd’hui, j’ai décidé de voir si mon père avait raison.

Voilà l’été ! Et avec lui le retour du soleil, du barbecue et des apéros en terrasse des cafés.

C’est donc le moment idéal pour vous parler du pastis ! Car figurez-vous que pour les physico-chimistes, il est le siège de phénomènes des plus intéressants.

Alors faisons ensemble un tour dans les changements de phase du pastis et de ses cousins ouzo, raki et autres sambuca…

En bon scientifique, avant toute chose : l’expérience !

Cela fait plusieurs fois que j’entends attribuer le titre d’objet le plus fin du monde dans des domaines assez différents de la physique. Alors j’ai décidé de me pencher sur la question.

Pour commencer, qu’est-ce que j’entends par « un objet fin » ? Je vais supposer que c’est un corps dont l’épaisseur est beaucoup plus faible que sa largeur et sa longueur.

Pour un objet dont on connait l’épaisseur et les dimensions (largeur ou longueur), on peut simplement quantifier sa finesse en faisant le rapport des deux.

Dans mon billet d’il y a quelques semaines, je vous ai proposé de partir à la chasse aux arcs-en-ciel. J’ai notamment mentionné que l’arc apparaît sous un angle d’environ 42° par rapport à l’axe qui relie le soleil à l’observateur.

Il se trouve qu’en écrivant ce résultat, je me suis dit qu’il devait découler de manière évidente de la loi de Descartes appliquée à l’intérieur de la goutte, un truc du genre arccos de 1/n où n est l’indice de réfraction de l’eau qui forme les gouttes. Mais en scientifique fainéant et peu rigoureux, je n’ai pas vérifié…