Category

Mathématiques

Category

pencilMa fille n’aime pas quand les crayons de couleur sont taillés trop fins. Ben oui quoi, après c’est plus long pour colorier ! J’ai beau lui expliquer que grâce aux courbes remplissantes, on peut toujours tout colorier même avec un crayon infiniment fin, j’ai l’impression que l’argument ne passe pas.

Et pourtant, nous allons voir dans ce billet que l’on peut effectivement trouver des courbes qui remplissent totalement une surface en passant par tous ses points.

Et tant pis si ça va à l’encontre de l’intuition !

epidemieComprendre comment se propagent les épidémies peut être d’une importance capitale. Qu’il s’agisse de maladies ou de virus informatiques, il est utile d’analyser à partir de quel point une épidémie peut s’emballer, ou bien quelle est la meilleure manière de traiter une population si on possède un antidote.

Pour étudier cela avec des simulations, on fait appel à des modèles où les individus sont représentés par des noeuds d’un réseau dont les liens sont aléatoires et figurent la possible propagation de l’épidémie : on parle de graphes aléatoires.

C’est en cours de philo que j’en ai entendu parler pour la première fois ! Notre prof nous faisait un cours sur la logique et ses fondements, et c’est alors qu’elle le mentionna : le fameux théorème de Gödel, celui qui prouve que quoi qu’on fasse, il existe des énoncés mathématiques vrais, mais indémontrables. Les mathématiques resteront à tout jamais un édifice imparfait !

J’en fus évidemment tout retourné et fasciné : comment était-il possible qu’un truc pareil existe ? Comment prouver ce résultat pouvait même être du domaine de la science ?

The_Last_Judgement._Jean_Cousin_extrait.L’affaire est entendue : c’est la fin du monde dans quelques jours. Alors un grand merci à tous mes fidèles lecteurs qui m’auront suivi jusque là !

Et pour finir en beauté, nous allons bien sur parler de l’Apocalypse ! Mais comme il s’agit de sciences, nous allons discuter de la probabilité prochaine de la fin du monde.

Et vous allez voir que ça n’est pas si catastrophique que vous le pensez, mais c’est plus inquiétant que vous ne le croyez !

En mathématiques, il existe quelques problèmes très simples à énoncer mais incroyablement difficiles à résoudre. C’est particulièrement vrai en arithmétique, et j’ai déjà eu l’occasion d’écrire des billets sur la conjecture de Goldbach (ici) et sur celle de Syracuse ().

Aujourd’hui, nous allons voir qu’en géométrie aussi, il existe des conjectures qu’un collégien peut comprendre mais sur lesquelles les meilleurs mathématiciens du monde se cassent les dents. Et comme la géométrie est partout autour de nous, cela va nous permettre de faire un tour dans le monde des abeilles et celui des bulles de savon.

Préliminaire : Ce billet est la suite de celui de la semaine dernière, qui portait sur les probabilités conditionnelles et introduisait la formule de Bayes. Si ces notions vous sont familières, vous n’êtes pas obligés d’aller le lire. Dans le cas contraire, n’hésitez pas à vous rafraîchir la mémoire !

La semaine dernière, je vous ai présenté la célèbre règle de Bayes, qui permet de relier la probabilité conditionnelle de « A sachant B » à celle de « B sachant A »

$latex P(A | B) = \frac{P(B | A) P(A)}{P(B)}&s=2&fg=0000ff$

Nous avions vu un cas simple, où A et B désignaient respectivement le fait d’être rouge et carré pour un objet que l’on tire au hasard dans une urne (« quelle est la probabilité qu’il soit carré sachant qu’il est rouge »), ainsi qu’un cas plus subtil où il était question de dépistage du cancer.

L’idée était de souligner la différence entre « la probabilité d’avoir le cancer sachant qu’on est dépisté positif », notée P(C | +), et  « la probabilité d’être dépisté positif sachant qu’on a le cancer », notée P(+ | C). D’après la formule de Bayes, on peut relier les deux par :

$latex P(C | +) = \frac{P(+ | C) P(C)}{P(+)}$

Aujourd’hui, nous allons voir en quoi la formule de Bayes peut s’interpréter dans un contexte plus général, et devenir un outil formidable pour quantifier la manière dont nous raisonnons, et même dont notre cerveau fonctionne !

Vous venez de passer un test pour le dépistage du cancer. Le médecin vous convoque pour vous annoncer le résultat : mauvaise nouvelle, il est positif. Pas de chance, alors que ce type de cancer ne touche que 0.1% de la population.

Vous demandez alors au praticien si le test est fiable. Sa réponse est sans appel : « Si vous avez le cancer, le test sera positif dans 90% des cas ; alors que si vous ne l’avez pas, il sera négatif dans 97% des cas ». L’affaire paraît entendue…

Et pourtant, à votre avis, après le résultat d’un tel test, quelle est la probabilité que vous ayez le cancer ? 90% ? 87% ? Moins que ça ?

Pour répondre à cette question, il va falloir faire un tout petit peu de probabilités…mais ça en vaut la peine, vous allez découvrir que malgré votre test positif, la probabilité d’être malade n’est que de 2.9% ! Creusons un peu ce petit paradoxe, et partons à la découverte de la formule de Bayes, l’une des plus importantes de toute l’histoire des sciences !

Les intégrales de Borwein sont une petite curiosité mathématique, mais qui sous des dehors inoffensifs peuvent nous faire réfléchir l’idée de démarche scientifique.

Voici le problème : on s’intéresse aux intégrales de la forme suivante, définies pour chaque nombre entier positif n:

A priori rien de très barbare dans cette formule, rien de passionnant non plus. Là où ça devient intriguant, c’est quand on commence à calculer explicitement la valeur de l’intégrale pour différentes valeurs de n.

Hier soir, vous avez organisé une petite fête et invité une vingtaine d’amis. Alors qu’au milieu de la soirée, la conversation tourne (allez savoir pourquoi) sur les signes du zodiaque, deux de vos invités découvrent avec stupeur que leur anniversaire tombe le même jour !

– Incroyable !

– Ah oui, quelle coïncidence !

– Tu imagines la probabilité que ça arrive ?

Eh bien justement, parlons en de la probabilité !

Puisque que nous sommes dans une période intensément électorale, il me faut absolument aujourd’hui vous parler du paradoxe de Condorcet.

Il s’agit d’une constatation formulée au XVIIIème siècle par le philosophe-marquis-mathématicien Nicolas de Condorcet, lequel a observé que dans certaines situations, quel que soit le mode de scrutin que l’on choisit, il est impossible de désigner un vainqueur indiscutable.

Cela peut paraître étonnant, mais comme nous allons le constater, le paradoxe de Condorcet est loin d’être une situation théorique. Pour autant vous allez le voir, il ne signifie pas pour autant l’impossibilité totale d’imaginer un scrutin démocratique juste.